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a b s t r a c t

The proper characterization of the experimental errors is essential for the correct evaluation of esti-
mated model parameters, model fit and model predictions based on kinetic rate expressions. However, it
is common to ignore the influence of experimental errors during kinetic studies due to difficulties to char-
acterize how experimental errors depend on the reaction conditions. The behavior of experimental error
depends on the specific features of the experimental system; however, in many cases the main sources of
experimental errors are the unavoidable oscillations of the input variables. This work analyzes how the
experimental errors affect kinetic studies based on catalytic tests when oscillations of the input variables
are the main sources of uncertainties. The first part of this work assumes that the reaction rate can be
described accurately as a first-order reaction in a PFR. Analytical expressions are derived for the variance of

the reactant conversion in distinct scenarios and are used to analyze the quality of the obtained parameter
estimates. It is shown here that the conversion variances can be described as functions of the mea-
sured conversion values, normally presenting a point of maximum for conversion values in the range of
0.6 < X < 1.0 when observed experimental fluctuations are controlled by the fluctuations of the input vari-
ables. Constant conversion variances should be expected only when fluctuations are controlled by ana-
lytical conversion measurements. As a consequence, optimum parameter estimation may be performed

inte
either with differential or

. Introduction

Kinetic expressions are useful tools for the evaluation, compari-
on and prediction of catalyst activity, allowing for the optimization
f catalyst performance both in laboratory and industrial scales.
he analysis of models and kinetic parameters may also help to
larify catalytic routes and understand reaction paths, as usually
erformed in kinetic studies [1,2].

In order to analyze catalyst performance and obtain kinetic
arameters, differential methods have normally been employed.
he main reason for the widespread usage of this kind of kinetic
nalysis is the simple calculation of reaction rates (which does not
equire numerical integration of balance equations), based on the
ssumption of negligible variation of concentration (or partial pres-
ure) of the reactants. In these systems, the conversion is kept at

ow values (<20%), so that it is possible to assume that the kinetic
ate is constant along the reactor length [2,3].

On the other hand, the use of differential methods may not be
ppropriate for kinetic studies. First, the conditions required to

∗ Corresponding author. Tel.: +55 21 25628337; fax: +55 21 25628300.
E-mail address: pinto@peq.coppe.ufrj.br (J.C. Pinto).

385-8947/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
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gral methods, depending on the behavior of the conversion variances.
© 2009 Elsevier B.V. All rights reserved.

keep the conversion at low values may impose limits on the exper-
imental ranges of operation variables, such as volumetric flow,
partial pressure of reactants and reaction temperature in order to
keep the conversion at low values. Second, obtained conversion
values may be very similar to each other, making the statistical dis-
crimination of available data very difficult, when the experimental
errors are taken into consideration. These restricted conditions are
not imposed for the use of integral methods, since they can be used
at any conversion level.

Conversely, statistical experimental designs have been pro-
posed to allow for adequate variation of operation variables and
process responses, allowing for more precise estimation of model
parameters and identification of experimental effects. In this con-
text the use of differential methods in order to avoid the numerical
integration of balance equations may not be justified, as sophisti-
cated numerical techniques and computer software are available
nowadays for the immediate integration of mass and energy bal-
ances. Therefore, it is not necessary to assume that operation

conditions are constant along the reactor volume and/or during
the experimental run in order to analyze obtained kinetic data.

The estimation of model parameters is usually performed
through minimization of a metric function that represents the
distance between the experimental and the calculated response

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:pinto@peq.coppe.ufrj.br
dx.doi.org/10.1016/j.cej.2009.08.012
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Nomenclature

B sensitivity matrix
bij ij-element of sensitivity matrix
C constant value defined in Eq. (12)
S objective function
T temperature
v volumetric flow rate
V� covariance matrix of parameter estimates
Vy experimental covariance matrix
W catalyst mass
X conversion
x inlet variables
y outlet or response variables
˛ packing quality of the catalyst bed
� model parameter
�2

XA variance of analytical measurement of variance
�2

W variance of catalyst mass
�2

X variance of conversion
�2

y variance of outlet variable
�2

�
variance of parameter estimate
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�2
T variance of temperature

�2
v variance of volumetric flow rate

alues. Most kinetic studies do not take into account the variance
f the measured values and, in this case, statistical tests cannot be
pplied properly to evaluate the model adequacy and the quality
f model parameters and of the model fit [4].

A more fundamental procedure is based on the assumption that
he experimental errors follow the normal distribution, the model is
erfect and experiments are well done. In this case, it can be shown
hat the parameter values can be obtained through the minimiza-
ion of the likelihood function, defined as [5,6]:

=
∑

i

(ye
i
− yc

i
(x, �))2

�2
yi

(1)

here the index i indicates the experimental point; ye
i

represents
he values of experimental values of process responses; yc

i
repre-

ents the calculated values of process responses, calculated as a
unction of inlet design variables (x) and model parameters (�); and
2
yi

is the variance of process response measurements. (Rigorously,
he determination of the probability distribution of a particular

easurement can be obtained only through extensive replications.
owever, most times this is not feasible, due to time and cost con-

traints. The normal distribution is often assumed because it allows
or close representation of many measurement distributions and
ecause the mathematical treatment of the data is simple, as only
he mean value and the variance are needed. The proposed analysis
an be extended to non-normal problems with the help of more
nvolving numerical schemes [5,6]; however, this is beyond the
cope of the present manuscript.)

In Eq. (1), each difference between experimental and model
esponse values is weighted by the respective experimental error.
o, experimental points that are subject to large experimental
ncertainties do not influence the objective function significantly.
s a consequence, the distance between model responses and
xperimental data tends to be smaller when the experimental

ariances are small. Therefore, the correct characterization of
xperimental error is a fundamental issue during estimation of
odel parameters and analysis of experimental data. This may

e very important because the precision of experimental mea-
urements is transferred to the precision of kinetic parameters,
ing Journal 155 (2009) 816–823 817

which in turn are transferred to precision of output model pre-
dictions.

Usually, the experimental error is completely ignored in kinetic
problems. For this reason, estimation of model parameters and
model building are carried out with the help of the well-known
least squares function [7–10]. The underlying hypothesis that jus-
tifies the use of the least squares function is that the experimental
error is the same for all measurements. In some cases, the vari-
ance in Eq. (1) is considered equal or an arbitrary fraction of the
measured variable [11,12].

The resistance that many offer for proper characterization of
experimental errors is understandable. As a matter of fact, as
already said the correct characterization of experimental errors
usually demands a large number of replicates, which may be many
times unfeasible, due to existence of time and cost constraints.
Therefore, techniques that allow for the simultaneous evaluation of
experimental errors and minimization of the experimental efforts
are welcome [4,5,13–16].

The parameter uncertainties can be represented in terms of the
covariance matrix of parameter uncertainties (V�), defined as [4,5]:

V� = (BT · V−1
y · B)

−1
(2)

where Vy is the covariance matrix of experimental process response
measurements and B is the sensitivity matrix, defined as:

B = [bij] =
[

∂yj

∂�i

]
(3)

In order to obtain precise parameter values, a specified metric of
the matrix V� must be minimized, which can be used for the design
of the experimental conditions. For a first-order reaction (A → B,
rA = − �·PA) where the output process response is the conversion
(X) of reactant A, the precision of parameter � after NE experiments
can be obtained as:

1

�2
�

=
NE∑
i=1

(∂Xi/∂�)2

�2
Xi

(4)

For one to use Eq. (4) in order to characterize the precision of
the kinetic parameter and of the calculated model responses, it is
necessary first to characterize the experimental error of experi-
mental data. However, �2

Xi
may depend on specific features of the

analyzed catalyst system, which may involve the precision of reac-
tant feed rates, the control of reactor conditions, the precision and
accuracy of off-line laboratory analyses, etc. The technical literature
has largely overlooked this issue.

It seems clear that experimental errors are not necessarily con-
stant throughout the experimental range. For example, Pereira et
al. [17] studied the gibbsite dissolution in the presence of NaOH
and concluded (based on an extensive experimental plan), that
the conversion variances depended on the measured conversion
values. The authors fitted an empirical model to available data
to describe the conversion variance as a function of the conver-
sion.

Larentis et al. [18] investigated the sources of error in reaction
systems involving gaseous species and on-line chromatographic
analyses. The proposed error analysis allowed for the identifica-
tion of the predominant reactions that were occurring in different
experimental ranges. Besides, it was shown that the main sources
of error were probably associated with the catalyst activity, which
can be affected by the catalyst itself, the preparation of the catalyst

bed or the operational conditions of the reactor.

Gutierrez and Danielson [19] analyzed the error structure of
dynamic enzymatic assays when the initial enzyme and substrate
concentrations are subject to uncertainties. They showed that the
variance of the substrate conversion presents a heteroscedastic
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ehavior in these cases, reaching a maximum value around 60–80%,
hich could be described with the help of a hybrid empirical-
henomenological model.

Based on previous remarks, it may be concluded that the proper
haracterization of experimental errors can be extremely useful for
hose who are working in the field of chemical kinetics and catal-
sis. Besides, it can also be said that experimental errors are not
ecessarily constant in the experimental region for better under-
tanding of the reaction system, as shown experimentally and
xplored theoretically. For these reasons, model equations are pro-
osed in the present work to represent how experimental variances
epend on reaction conditions in typical catalyst tests. The main
ursued objective is the development of a theoretical framework
hat may allow for simultaneous characterization of variances and

inimization of the number of replicate runs. In this manner, more
nvolving and rigorous statistical analyses of available data may
ecome possible, even when the number of replicates is small.

It is assumed here that a first-order reaction is carried out in
plug flow reactor at isothermal conditions. It is also assumed

hat diffusion constraints are absent. These constraints should not
e overemphasized because catalyst tests are normally performed

sothermically in plug flow reactors and because first-order reac-
ion rate expressions are frequently used for model building and
inetic analysis. Initially, first-order kinetics is used frequently as
first model building stage. Second, first-order kinetics may be

egarded as a local linearization of more involving kinetic mech-
nisms. Third, the main objective of the present paper is showing
hat experimental errors may depend quite considerably on the
peration conditions, which has been largely overlooked in the
eld of kinetics and catalysis. In order to illustrate this point, com-
lex kinetic schemes are not necessary, as shown in the present
anuscript. In spite of the previous remarks, it is important to say

hat the analysis of more complex reaction systems can also be
erformed with the help of the proposed differential analysis.

It is shown here that the conversion variances can be described
s functions of the measured conversion values, presenting a
oint of maximum conversion variance in the conversion range
f 0.6 < X < 1.0 when observed experimental fluctuations are con-
rolled by the fluctuations of the input variables. As presented in
he following sections, constant conversion variances should be
xpected only when fluctuations are controlled by errors in the
nalytical measurement of the outlet variables, as the conversion.
s a consequence, optimum parameter estimation may be per-

ormed either with differential or integral methods, depending on
he behavior of the conversion variances.

. Conversion variance for a first-order reaction

Let us assume that a catalytic system is designed to operate
sothermically. At the desired reaction temperature (TD), volu-

etric flow rate (vD) and catalyst bed mass (WD), the expected
onversion is XD. However, in this hypothetical system, the experi-
ental design variables are subject to fluctuations, so that the real

emperature (T), volumetric flow rate (v) and mass of catalyst (W)
re different from the desired design values, leading to a different
onversion (X).

Expressing the conversion as a function of the design variables
n terms of a Taylor series truncated after the first term:

≈ X +
[(

∂X
)∣∣∣ ]

(T − T ) +
[(

∂X
)∣∣∣ ]

(v − v )
D ∂T ∣
T=TD

D ∂v ∣
v=vD

D

+
[(

∂X

∂W

)∣∣∣∣
W=WD

]
(W − WD) (5)
ing Journal 155 (2009) 816–823

or

�X ≈
[(

∂X

∂T

)∣∣∣∣
T=TD

]
�T +

[(
∂X

∂v

)∣∣∣∣
v=vD

]
�v

+
[(

∂X

∂W

)∣∣∣∣
W=WD

]
�W (6)

Squaring and averaging both sides of Eq. (6), in order to obtain
the conversion variance (≈ is replaced by =, observing that the
expected value of �z2 is the variance �2

z , where z is any variable):

�2
X =

{[(
∂X

∂T

)∣∣∣
T=TD

]
�T +

[(
∂X

∂v

)∣∣∣
v=vD

]
�v +

[(
∂X

∂W

)∣∣∣
W=WD

]
�W

}2

(7)

Assuming that random fluctuations of the design variables are
not correlated to each other:

�2
X =

[(
∂X

∂T

)∣∣∣∣
T=TD

]2

�2
T +

[(
∂X

∂v

)∣∣∣∣
v=vD

]2

�2
v

+
[(

∂X

∂W

)∣∣∣∣
W=WD

]2

�2
W (8)

Eq. (8) is frequently used in statistics to perform robust pro-
cesses or product design [20].

For a first-order reaction, the conversion can be written as:

X = 1 − exp
(

−�0 · e−(�1/T) W

v

)
(9)

Therefore,

∂X

∂T
= −exp

(
−�0 · e−(�1/T) · W

v

)
︸ ︷︷ ︸

1−X

�0 · e−(�1/T) · W

v︸ ︷︷ ︸
ln(1−X)

�1

T2
(10a)

∂X

∂v
= −exp

(
−�0 · e−(�1/T) · W

v

)
︸ ︷︷ ︸

(1−X)

−�0 · e−(�1/T) · W

v︸ ︷︷ ︸
ln(1−X)

1
v

(10b)

∂X

∂W
= −exp

(
−�0 · e−(�1/T) · W

v

)
︸ ︷︷ ︸

(1−X)

−�0 · e−(�1/T) · W

v︸ ︷︷ ︸
ln(1−X)

1
W

(10c)

Inserting Eqs. (10) in Eq. (8) and rearranging:

�2
X = [(1 − X) ln(1 − X)]2 ·

{
�2

1

T4
�2

T + �2
v

v2
+ �2

W

W2

}
(11a)

If the evaluation of X is also subject to a measurement error with
variance �2

XA, then Eq. (11a) should be written as:

�2
X = [(1 − X) ln(1 − X)]2 ·

{
�2

1

T4
�2

T + �2
v

v2
+ �2

W

W2

}
+ �2

XA (11b)

Now it is necessary to evaluate the terms involving the design
variables and its variances. If the analyzed experimental range is
not very large and/or the relative error measurements are con-
stant, the terms inside the brackets may be regarded as constant
and represented by C. In this case, Eq. (11) can be written as:

�2
X = C · [(1 − X) ln(1 − X)]2 (12a)
�2
X = C · [(1 − X) ln(1 − X)]2 + �2

XA (12b)

Eq. (12) presents interesting characteristics, as shown in Fig. 1,
for an arbitrary C value. In Fig. 1A, the conversion variance presents
a maximum value at X equal to 0.63, with inflection points at X equal
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ig. 1. Variance of the conversion (A) and relative conversion variance (B) as a
unction of conversion for Eq. (11).

o 0.32 and 0.93. When conversion is equal to zero, conversion vari-
nce is also equal to zero because the reactant concentration does
ot change and the reactor output is not subject to process fluc-
uations. As the conversion increases, the conversion variance also
ncreases, since variations of the reaction conditions perturb the

easured conversion values and the influence of process fluctua-
ions is larger when reaction rates are high and the magnitude of
onversion values increases. However, the continuous increase of
onversion leads to appearance of a point of maximum conversion
ariance. After this point of maximum, the variance of conversion
ecreases, as reaction rates at high conversion values become lower
nd perturbations of the operating conditions cause less significant
ffects on the observed reaction rates. If the relative conversion
ariances are considered (that is, the conversion variance divided
y squared conversion values), as presented in Fig. 1B, one can
bserve that the relative conversion variance decreases almost lin-
arly with conversion, given the higher reaction rates observed at
ower conversions.

It must be noted that Gutierrez and Danielson [19,21] developed
n equation for the variance of substrate conversion in dynamic
nzymatic assays that is similar to Eq. (12). This clearly shows that
q. (12) may find application in distinct experimental systems.

Eq. (12) can be very useful because it describes the conversion
ariance in terms of the measured conversion values. Therefore,
f replicates are available at a certain experimental condition, it is
ossible to determine the constant C:

2
X = (�2

X0 − �2
XA) · [(1 − X) ln(1 − X)]2

[(1 − X0) ln(1 − X0)]2
+ �2

XA (13)

here �2
X0 represents the available conversion variance and X0 rep-

esents the average conversion obtained from available replicates.
Obviously, the characterization of the variance in a single point
ay lead to inaccurate representation of conversion variances in
he whole experimental range. Nevertheless, it seems much more
easonable to use Eq. (13) for more fundamental data analysis than
o ignore the effect of fluctuations of the design variables on the
onversion variances.
ing Journal 155 (2009) 816–823 819

It must be pointed that the parameter C will not be constant if
the experimental region of design variables is large and variances
of the design variables are not proportional to measured values.
Therefore, one must consider that Eq. (13) can constitute a useful
approximation of the real variance behavior.

3. Optimum estimation of the kinetic parameter

Temperature effects are neglected in the following paragraphs.
Therefore, the well-known Arrhenius equation is not used to repre-
sent the temperature dependence of the kinetic rate constant. This
assumption will be relaxed in the following sections. In this case,
using Eq. (4) to obtain 1/�2

�
, it is possible to write:

1

�2
�

= (∂X/∂�)2

�2
X

(14)

The partial derivative of conversion in respect to the kinetic
constant is:

∂X

∂�
= −exp

(
−� · W

v

)
︸ ︷︷ ︸

(1−X)

⎡
⎢⎢⎣−� · W

v︸ ︷︷ ︸
ln(1−X)

1
�

⎤
⎥⎥⎦ (15)

This can also be written in terms of the conversion, as:

�2

�2
�

= (1 − X)2 ln2(1 − X)

�2
X

(16)

The most precise estimation of parameter � can be achieved
when the variance of the model parameter has a minimum value.
This is equivalent to maximizing the right-hand side of Eq. (16).
In order to do that, three cases are considered below: (i) con-
stant conversion variance (least squares function), meaning that
uncertainties are controlled by off-line laboratory analyses; (ii)
conversion variance described by Eq. ((12)–(13)), meaning that
uncertainties are controlled by the constant precision of the input
variables; and (iii) conversion variance described by Eq. (11), mean-
ing that uncertainties are controlled by the varying precision of the
input variables.

3.1. Constant conversion variance

Based on Eq. (11), the conversion variance is constant when
uncertainties are controlled by off-line laboratory analyses. In this
case, maximizing Eq. (16) is equivalent to maximizing the following
equation:

max
1

�2
�

= max (1 − X)2 ln2(1 − X) (17)

which has a maximum placed at the value for X equal to 0.63. Based
on this result, it may be concluded that, when the experimental
error is constant (and the analytical errors are predominant), it is
preferable to use integral methods for model building and precise
and accurate parameter estimation. This may be regarded as a very
important conclusion, given the widespread usage of differential
kinetic analysis in the field of catalysis.

However, according to Eq. (12), this is the point where the
conversion variance is maximum (when it is assumed that the
conversion variance is not constant). This constitutes a very impor-
tant result, because this means that the experimental optimum

design (when the conversion variance is constant) indicates that the
optimal experiment is placed at the region where the conversion
variance attains its highest value (when the conversion variance is
not constant). Therefore, if one assumes that conversion variances
are constant and the assumption is not correct, experimental design
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ill erroneously recommend the experimental region where mea-
urement errors attain the largest values. This clearly illustrates
he importance of taking into account the proper interpretation of
xperimental errors in order to avoid very bad data analysis and
xperimental design.

.2. Conversion variance described by Eq. (12)

If the conversion variance is described by Eq. (12), meaning that
ncertainties are controlled by the constant precision of the input
ariables, the error of parameter estimate can be determined as:

�2

�2
�

= (1 − X)2 ln2(1 − X)

(1 − X)2 ln2(1 − X) · C + �2
XA

= 1

C + (�2
XA/(1 − X)2 ln2(1 − X))

(18)

If the analytical conversion variance �2
XA is neglected, then the

arameter variance does not depend explicitly on the experimen-
al conditions (although it depends on the obtained conversion,
ecause it is a function of �, which is obtained as a function of the
bserved conversion), which is very surprising! However, if �2

XA is
onsidered, then Eq. (12) must be maximized in order to minimize
he parameter variance. Once more, this means that the optimum
xperimental conditions are the ones that lead to conversion values
round 0–63%, when the reaction follows the first-order kinetics.
s observed in the previous case, this clearly shows that the kinetic

ests performed through differential methods may not be adequate
or kinetic analysis, as the parameter variance approaches its max-
mum value when conversion approaches zero! Therefore, it may
e concluded once more that it is preferable to use integral meth-
ds for model building and precise parameter estimation. Again,
his may also be regarded as a very important conclusion, given
he widespread usage of differential kinetic analysis in the field of
atalysis.

.3. Conversion variance described by Eq. (11)

If the conversion variance is described by Eq. (11), meaning that
ncertainties are controlled by the varying precision of the input
ariables, the parameter variance can be written as:

�2

�2
�

= 1{
�1

2

T4 �2
T + �2

v
v2 + �2

W
W2

}
+ �2

XA

(1−X)2 ln2(1−X)

(19)

It is necessary to perform the maximization of Eq. (19) in order
o obtain the best experimental conditions for estimating the model
arameter. If the variances of input variables are constant, the right-
and side of Eq. (19) presents a monotonic behavior with respect
o volumetric flow rate and mass of catalyst. The dependence of
q. (19) with respect to temperature is more complex because the
odel parameter certainly depends on the reaction temperature.

n order to show the main trends, it is preferable to evaluate the
ariance behavior when the fluctuations are controlled by a single
nput variable.

.3.1. The flow rate effect is predominant
Considering that the effects of the temperature and catalyst

ass in the conversion variance are negligible and only the effect

f the flow rate is important, from Eq. (11), the conversion variance
an be written as:

2
X = [(1 − X) ln(1 − X)]2 ·

{
�2

v
v2

}
+ �2

XA (20)
Fig. 2. �2
X

· W as a function of conversion for Eq. (22).

The volumetric flow rate can be expressed in terms of conversion
as:

v = − � · W

ln(1 − X)
(21)

Inserting Eq. (21) into Eq. (20):

�2
X · W2 = �2

v
�2

· (1 − X)2 ln4(1 − X) + �2
XA · W2 (22)

If the analytical error can be neglected, the conversion variance
can be evaluated by the expression [(1 − X)2ln4(1 − X)], presented in
Fig. 2 as a function of X. Considering the variance of the volumetric
flow constant, the right-hand side of Eq. (22) presents a maximum
at X equal to 0.86. Again, for low and high values of conversion, the
conversion variance tends to be lower than for intermediate values
of conversion.

In order to determine the optimal experimental run for pre-
cise parameter estimation, the conversion variance defined in Eq.
(22) must be inserted into Eq. (16) (or one can simplify Eq. (19) by
assuming that the effect of the flow rate is predominant) resulting
in:

�2

�2
�

= v2

�2
v

(23)

If the variance of the volumetric flow rate is constant, the param-
eter � is estimated with more precision when the volumetric flow
is maximum. Eq. (23) indicates that � is estimated with more pre-
cision when the conversion is lower. Again, this may be regarded as
a very important result, as it indicates that the correct evaluation
of the experimental error changes completely the determination of
the best region for precise parameter estimation. Therefore, when
the variance of the feed flow rate controls the precision of output
responses, the use of differential methods in the kinetic analysis
may be considered, since at high volumetric flow the conversion is
usually low and the reaction rate can be regarded as constant along
the reactor length.

3.3.2. The temperature effect is predominant
This may be the case of highly endo/exothermic reactions or

systems where the temperature control is difficult. Considering that
only the deviations in the temperature are important, from Eq. (11),
the conversion variance can be written as:

�2
X = [(1 − X) ln(1 − X)]2

[
�2

1

T4
�2

T

]
(24)
The conversion variance cannot be expressed as a function of
conversion only, as it also depends on the flow rate and mass of cat-
alyst. If reactor temperature is assumed to be constant, the behavior
of the variance conversion is similar to the one illustrated in Fig. 1.
In this case, the conversion variance is higher for lower tempera-
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bed) indicates the fraction of fluid that short-cuts the catalyst bed.
˛ values can be estimated from Residence Time Distribution (RTD)
experiments, using a trace step input [3].

The value of ˛ may change from bed to bed, consequently lead-
ing to unavoidable fluctuation of the conversion. For a first-order
ig. 3. Variance of the conversion a function of conversion: (A) for three temperatu

ures, as clearly seen in Eq. (24). In order to illustrate this effect, let
s assume that:

= 100 · exp
(

−3000
T

)
(25)

Based on Eq. (25), the conversion value and the respective con-
ersion variance were calculated for distinct temperatures and
esidence times. The obtained results are presented in Fig. 3. When
emperature is varied, the behavior of the conversion variance may
e very complex and depends on the kinetic parameters and the
patial times. Despite that, in all cases intermediate conversion
alue leads to larger conversion variances.

In order to determine the optimal conditions for precise param-
ter estimation, Eq. (19) can be written as:

�2

�2
�

= 1{(
�2

1
T4

)
�2

T

} (26)

Maximization of Eq. (26) can be achieved at high temperatures,
eaning that when the error is controlled by temperature effects,

xperiments should be performed at the maximum allowable tem-
erature values in order to minimize the variance of the kinetic
arameter. One must observe that high temperature conditions
lso lead to lower values of the conversion variance, as shown
n Fig. 3. This is very interesting, since when the conversion vari-
nce is not assumed constant and the temperature effect in the
xperimental error is predominant, the designed experiments must
e performed at experimental conditions where conversion vari-
nce has lower values. One must observe that when conversion
ariance was considered constant (Section 3.1) the experimental
ondition that minimizes the parameter estimate variance was the
ame where conversion variance reaches a maximum value. Once
ore, this shows the importance of considering the real behav-

or of the conversion variance, instead of using the much simpler
ssumption of constant conversion variance during data analy-
is.

As it becomes clear that the precision of estimated parameters
epends not only on the experimental precision, but also on the
elected experimental conditions. When the error is controlled by
emperature effects, it can be concluded that experiments should
e performed at the maximum allowable temperature values.

.3.3. The catalyst mass effect is predominant

Considering now that the fluctuations in the catalyst mass are

redominant, Eq. (19) can be expressed as:

1

�2
�

= 1

�2
W

W2

�2
(27)
d several spatial times; and (B) for three spatial times and several temperatures.

The variance of the catalyst mass is probably constant and
related to the precision of the balance used to weigh the mass.
According to Eq. (27), the optimal parameter estimation can be
achieved when the mass of catalyst is equal to the maximum
allowed value. Therefore, the parameter variance is smaller when
the catalyst mass is larger. As one might already expect, the weigh-
ing of low catalyst masses may introduce large experimental errors
in the analysis. As conversion tends to increase when the mass of
catalyst increases, it can be said indirectly that the integral method
is preferable when the conversion variance is controlled by fluc-
tuations of the catalyst mass, since at high conversion values the
differential method is not applicable.

3.4. The packing effect

It must be pointed out that packing of the catalyst bed does not
depend directly on the design variables and should not be con-
sidered separately. The random packing of the catalyst bed may
promote the occurrence of stagnant zones and short-cuts, resulting
in different contact times between the fluid phase and the cata-
lyst particles. For PFR reactors, this effect can be modeled in terms
of two parallel reactors: one containing the catalyst and the other
formed by void space, as illustrated in Fig. 4 [3]. According to the
proposed model, ˛ (which is quality of the packing of the catalyst
Fig. 4. Schematic representation of the real catalyst bed and the proposed bed
model.
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ig. 5. Conversion variance as a function of conversion for several values of ˛ in Eq.
32).

eaction, the conversion can be written as:

= (1 − ˛)(1 − e−(�·W/v(1−˛))) (28)

As performed previously, the conversion variance can be
xpressed as a function of characteristic fluctuations of ˛. So, the
onversion variance can be written as:

2
X =

(
∂X

∂˛

)2

�2
˛ (29)

s

∂X

∂˛
= −1 + exp

(
−k0e−(E/RT) · W

v0(1 − ˛)

)
+exp

(
−k0e−(E/RT) · W

v0(1 − ˛)

)
k0e−(E/RT) · W

v0(1 − ˛)
(30)

hen

∂X

∂˛
= 1 −

(
1 − X

1 − ˛

)
·
[

1 + ln
(

1 − X

1 − ˛

)]
(31)

herefore

2
X =

{
X

1 − ˛
−

(
1 − X

1 − ˛

)
ln

(
1 − X

1 − ˛

)}2
�2

˛ (32)

his equation presents a maximum at:

= 1 + e2 + ˛(1 − e2)
e2

(33)

For good packing of the catalyst bed, ˛ values must be close to
ero. In this case, the maximum conversion variance would occur
t X equal to 0.86. Fig. 5 shows the conversion variance as a func-
ion of conversion for several values of ˛. It can be observed that
he conversion where the conversion variance attains it maximum
alue is shifted towards smaller values, as ˛ increases. Besides, as
describes a short-cut fraction, conversion is limited to 1 − ˛.
The best region for precise parameter estimation can be derived

s shown previously. In this case, the parameter variance can be
ritten as:

�2

�2
�

= (1 − X)2 ln(1 − X)2{
X

1−˛ −
(

1 − X
1−˛

)
ln

(
1 − X

1−˛

)}2

1

�2
˛

(34)

For a given temperature, the maximization of Eq. (34) leads to X
qual to 0, as shown in Fig. 6 for different values of ˛. As it is probable

hat the quality of the catalyst bed may control the precision of the
atalyst tests frequently, this may be regarded as a very important
esult. It indicates that reaction conditions should be selected in
rder to give small conversion values, allowing the increase in the
recision of parameter estimates. It also can be observed that these
Fig. 6. Potential of estimation as a function of the conversion for several void frac-
tions of the reactor.

conditions enable the use differential methods and may lead to
more precise parameter estimation when errors are controlled by
packing effects.

3.5. Comparative analysis of the different scenarios

As shown in the previous paragraphs, the optimum experi-
mental region for the estimation of model parameters and model
building depends on the behavior of conversion variances. When
the conversion variance is constant (and is controlled by analytical
techniques), optimum determination of model parameters can be
carried out with integral methods, as the lowest parameter vari-
ances are obtained for conversions values from 0 to 63%. Similar
results can be obtained when the fluctuations induced by random
variation of the design variables do not change considerably in the
design region. Despite that, the maximum conversion variances are
observed in the same experimental region, but are compensated by
similar increase of conversion sensitivity to parameter estimation.

When the conversion variances are controlled by the design
variables, then the scenario is not clear. For instance, experiments
can be analyzed through differential methods if conversion vari-
ances are controlled by flow rate or packing fluctuations, or should
be analyzed with integral methods if conversion variances are con-
trolled by temperature of catalyst mass fluctuations.

4. Experimental validation of Eq. (13)

Based on experimental data reported in the literature [17,19], it
can be assumed that Eq.(12) can be used to represent conversion
variances in reaction systems described by kinetic rate expres-
sions that are more complex than a first-order reaction. In order
to evaluate the applicability of the present analysis in a real prob-
lem, experimental data reported in the literature were taken as an
example. Pereira et al. [17] studied the dissolution of gibbsite in a
solution of NaOH in a batch reactor. One can readily observe that
similar analysis and equations can be obtained for batch reactors.
The authors carried out replicates at different conditions and used
an empirical expression to fit the conversion variance as a function
of the measured conversion. The empirical equation was:

�2
X = exp(A + B · X + C · X2) (35)

where A, B and C are empirical fitting parameters.
Fig. 7 presents the experimental data reported by Pereira et al.
[17] and a best fit obtained for Eq. (13). The conversion variance
was described as a function of the X/Xeq ratio, where Xeq is the
equilibrium conversion, equal to 94% at the analyzed experimental
conditions. One must observe that maximum conversion variances
occur at intermediate conversion values, as predicted by the pro-
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Fig. 7. Eq. (13) fitted to the data reported by Pereira et al. [17].

osed analysis. According to the authors, the kinetics of gibbsite
issolution could be described by a reversible expression written in
erms of the external area of gibbsite particles and hydroxide anion
oncentration, which is not a simple first-order reaction. Even so,
he adjustment of Eq. (13) to the available experimental data can
e considered satisfactory, as it must be pointed out that the con-
dence intervals of the true variances obtained from triplicates are
ery large. The use of Eq. (13), even when obtained from a single
xperimental point, as described in Eq. (14), is certainly much more
ppropriate for sound evaluation of the experimental uncertain-
ies than the usual assumption of constant conversion variance, as
mplicitly assumed when the procedure is used for the estimation
f model parameters and data analysis. It is worthwhile mention-
ng that Pereira et al. [17] conclude that their kinetic evaluation
epends on the assumed behavior of the experimental errors, thus
einforcing the analysis performed here.

. Conclusions

This paper assessed the effects of experimental errors on the
inetic analysis of experimental data obtained during catalytic
ests. Particular attention was given to conditions where the con-
ersion variances were controlled by a single experimental design
ariable. Simple and useful expressions were derived to express
ow observed conversion variances depend on the experimental
onditions, assuming first-order kinetics in a PFR.

It was shown that distinct optimum experimental designs for
recise parameter estimation are obtained when distinct assump-
ions are made for the behavior of the experimental errors.
his clearly indicates that proper characterization of experimen-

al uncertainties may be of fundamental importance for rigorous
tatistical analysis of kinetic data. Particularly, it was shown
hat reaction temperatures, catalyst masses and spatial velocities
hould be made equal to the maximum allowed values. Besides,
t was shown that conversion values should almost always lie in

[

[

ing Journal 155 (2009) 816–823 823

the range (0.50, 0.80), indicating that kinetic studies should almost
always be performed through integral methods. Despite that, it was
also shown that differential methods can be used when the errors
are controlled by the quality of the catalyst packing or the oscilla-
tions of feed flow rates. Finally, it is important to emphasize that
the use of integral methods is not restricted to experimental con-
ditions that lead to small conversions and large relative conversion
variances, as it happens when differential methods are used.
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